Select your language

Artur Kraszkiewicz*, Paweł Sobczak*, Wioletta Żukiewicz-Sobczak**, Ignacy Niedziółka*, Kazimierz Zawiślak*, Małgorzata Dula*
*University of Life Sciences in Lublin, Poland; **Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
corresponding author’s e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract
In Poland, the use of plant biomass for energy purposes is gaining importance. At the same time, the popularity of dendromass, despite changes in regulations increasing its supply for energy purposes, promotes an increased interest in a biomass of agricultural origin. This trend is associated not only with professional energy industry, but also depends on the increase in demand for different assortments of solid biofuels in single-family housing or municipal buildings, where coal boilers are replaced by modern heating devices powered by a biomass under the “anti-smog” program. Biomass combustion is treated as a process neutral to the environment through the prism of CO2 emissions. However, under certain conditions, the combustion of biofuels in individual heating systems can cause serious risks on the local scale for the environment and human health. The aim of the study was to assess the migration of elements in the ash during the burning process of maize straw briquettes in the low power boiler in the aspect of their impact on the natural environment, taking into account the directions and potential for the potential management of ashes. In the test conditions, the fuel used in the form of briquettes from maize straw does not differ from other fuels of this type. The combustion criteria adopted during the tests, whose characteristic feature was the use of a grate combustion system with fuel ignition from below and distribution of air under the grate, at minimum content O2, was acceptable in the scope of CO emissions for this type of boiler, falling into 3rd class according to the standard PN-EN 303-5: 2012. The burning of the gas components CO, NO and SO2 is significantly affected by combustion technology, combustion conditions and nitrogen content in the fuel. Choosing to burn biofuels with the lowest nitrogen content should contribute to the reduction of NO emissions, which becomes another criterion for allowing heating devices to be marketed. Despite the varied chemical composition, the ashes analyzed in terms of the macro environment, microelements and heavy metals do not tend to exceed the limits set by the relevant standards. The experimental results indicate that in low-power boilers fed with briquettes of maize straw, the ash components move. Anomalies that appeared for Al, Fe, Sc are particularly important. This process is important from the point of view of environmental protection, boiler durability and the possibility of using furnace wastes. Low-power boilers, which do not have exhaust gas treatment installations in which biomass fuels are used, may be a source of harmful emissions.

Keywords 
biomass combustion, emission, ash composition

Full text
PDF (English)